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Abstract

Structured real canonical forms for matrices in Rn×n that are symmetric or
skew-symmetric about the anti-diagonal as well as the main diagonal are pre-
sented, and Jacobi algorithms for solving the complete eigenproblem for three of
these four classes of matrices are developed. Based on the direct solution of 4× 4
subproblems constructed via quaternions, the algorithms calculate structured or-
thogonal bases for the invariant subspaces of the associated matrix. In addition
to preserving structure, these methods are inherently parallelizable, numerically
stable, and show asymptotic quadratic convergence.
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1 Introduction

The numerical solution of structured eigenproblems is often called for in practical ap-
plications. In this paper we focus on four types of doubly structured real matrices —
those that have symmetry or skew-symmetry about the anti-diagonal as well as the
main diagonal. Instances where such matrices arise include the control of mechanical
and electrical vibrations, where the eigenvalues and eigenvectors of Gram matrices that
are symmetric about both diagonals play a fundamental role [23].
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In addition to presenting doubly structured real canonical forms for these four classes
of matrices, we develop structure-preserving Jacobi algorithms to solve the eigenprob-
lem for three of these classes. A noteworthy advantage of these methods is that the
rich eigenstructure of the initial matrix is not obscured by rounding errors during the
computation. Such algorithms also exhibit greater numerical stability, and are likely
to be strongly backward stable [25]. Storage requirements are appreciably lowered by
working with a truncated form of the matrix. Because our algorithms are Jacobi-like,
they are readily adaptable for parallel implementation.

2 Automorphism groups, Lie and Jordan algebras

A number of important classes of real matrices can be profitably viewed as operators asso-
ciated with a non-degenerate bilinear form 〈·, ·〉 on Rn. (Complex bilinear or sesquilinear
forms yield corresponding complex classes of matrices.)

G = {G ∈ R
n×n : 〈Gx,Gy〉 = 〈x, y〉, ∀x, y ∈ R

n} (2.1a)

L = {A ∈ R
n×n : 〈Ax, y〉 = −〈x,Ay〉, ∀x, y ∈ R

n} (2.1b)

J = {A ∈ R
n×n : 〈Ax, y〉 = 〈x,Ay〉, ∀x, y ∈ R

n} (2.1c)

It follows that G is a multiplicative group, L is a subspace, closed under the Lie bracket
defined by [A,B] = AB − BA, and J is a subspace closed under the Jordan product
defined by {A,B} = 1

2
(AB + BA). We will refer to G, L, and J as the automorphism

group, Lie algebra and Jordan algebra, respectively, of the bilinear form 〈·, ·〉. For our
purposes, the most significant relationship between these three algebraic structures is
that L and J are invariant under similarities by matrices in G.

Proposition 2.1. For any non-degenerate bilinear form on Rn,

A ∈ L, G ∈ G ⇒ G−1AG ∈ L ; A ∈ J, G ∈ G ⇒ G−1AG ∈ J.

Proof. Suppose A ∈ L, G ∈ G. Then for all x, y ∈ Rn,

〈G−1AGx, y〉 = 〈GG−1AGx, Gy〉 by (2.1a)

= 〈Gx, −AGy〉 by (2.1b)

= 〈G−1Gx, −G−1AGy〉 by (2.1a)

= 〈x, −G−1AGy〉
Thus G−1AG ∈ L. The second assertion is proved in a similar manner.

Two familiar bilinear forms, 〈x, y〉 = xTy and 〈x, y〉 = xTJ2py where J2p =
[

0 Ip

−Ip 0

]
,

give rise to well-known (G,L, J) triples, as noted in Table 2.1. Less familiar, perhaps, is
the triple associated with the form 〈x, y〉 = xTRn y where Rn is the n × n matrix with
1’s on the antidiagonal, and 0’s elsewhere:

Rn
def
==

[
1

...
1

]
. (2.2)
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Letting pS(n) denote the Jordan algebra of this bilinear form, we see from (2.1c), that

pS(n) = {A ∈ R
n×n : ATRn = RnA} = {A ∈ R

n×n : (RnA)T = RnA} . (2.3)

It follows that matrices in pS(n) are symmetric about the anti-diagonal; they are
often called the persymmetric matrices. Similarly, the Lie algebra consists of matrices
that are skew-symmetric about the anti-diagonal,

pK(n) = {A ∈ R
n×n : ATRn = −RnA} = {A ∈ R

n×n : (RnA)T = −RnA} (2.4)

called, by analogy, the perskew-symmetric matrices. On the other hand, the automor-
phism group does not appear to have been specifically named. Yielding to whimsy, we
will refer to this G as the perplectic group:

P(n) = {P ∈ R
n×n : P TRnP = Rn} . (2.5)

Note that P(n) is isomorphic as a group to the real pseudo-orthogonal group O(d n
2
e, bn

2
c),

although the matrices in these two groups are quite different.

Bilinear Form Automorphism Group Lie Algebra Jordan Algebra

〈x, y〉 G L J

〈x, y〉 = xT y Orthogonals Skew-symmetrics Symmetrics

〈x, y〉 = xT J2py Symplectics Hamiltonians Skew-Hamiltonians

〈x, y〉 = xT Rn y Perplectics Perskew-symmetrics Persymmetrics

Table 2.1: Examples of structured matrices associated with some bilinear forms

2.1 Flip operator

Following Reid [23] we define the “flip” operation ( )F , whose effect is to transpose a
matrix across its anti-diagonal:

Definition 2.2. AF := RATR

One can verify that flipping is the adjoint with respect to the bilinear form 〈x, y〉 =
xTRn y; that is, for any A ∈ Rn×n we have

〈Ax, y〉 = 〈x,AFy〉, ∀x, y ∈ R
n. (2.6)

Consequently the following properties of the flip operation are not surprising:

(BF )F = B, (AB)F = BFAF , (BF )−1 = (B−1)F = B−F . (2.7)
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It now follows immediately from (2.3), (2.4), and (2.5), or directly from (2.1) using the
characterization of (·)F as an adjoint, that

A is persymmetric ⇔ AF = A, (2.8a)

A is perskew-symmetric ⇔ AF = −A, (2.8b)

A is perplectic ⇔ AF = A−1. (2.8c)

The following proposition uses (2.8c) to determine when a 2n × 2n block-upper-
triangular matrix is perplectic.

Proposition 2.3. Let B,C,X ∈ Rn×n. Then [ B X
0 C ] is perplectic iff C = B−F and BXF

is perskew-symmetric.

Proof. With A = [ B X
0 C ], we have AF =

[
CF XF

0 BF

]
. Then AF = A−1 iff

AAF =

[
B X
0 C

] [
CF XF

0 BF

]
=

[
BCF BXF +XBF

0 CBF

]
=

[
I 0
0 I

]
.

B and C must be invertible, since any perplectic matrix is invertible. Equating corre-
sponding blocks yields C = B−F and BXF = −XBF = −(BXF )F .

Analogously, one can show that [ B 0
X C ] is perplectic iff C = B−F and BFX is perskew-

symmetric. Interesting special cases include the block-diagonal perplectics, [ B 0
0 C ] with

C = B−F , and the perplectic shears, [ I X
0 I ] with X perskew-symmetric.1

The condition that BXF be perskew-symmetric can also be expressed as

BXF +XBF = 0 ⇔ XFB−F = −B−1X ⇔ (B−1X)F = −B−1X,

that is, B−1X is perskew-symmetric. It is of interest to compare Proposition 2.3 with
analogous results for symplectic block-upper-triangular matrices used in [9, 11]. There
it is shown that

[ B X
0 C ] is symplectic ⇔ C = B−T and B−1X is symmetric,

with special cases the block-diagonal symplectics, [ B 0
0 C ] with C = B−T , and the symplec-

tic shears, [ I X
0 I ] with X symmetric. These concrete examples illustrate that, by contrast

with the orthogonal groups, the perplectic and symplectic groups are not compact.

3 Perplectic orthogonals

Since orthogonal matrices are perfectly conditioned, and perplectic similarities preserve
structure, perplectic orthogonal similarity transformations are ideal tools for the nu-
merical solution of persymmetric and perskew-symmetric eigenproblems. From (2.5) it
follows that the perplectic orthogonal group, which we denote by PO(n), is given by

PO(n) = {P ∈ O(n) | RnP = PRn} , (3.1)

1It can be shown that every 2n×2n block-upper-triangular perplectic matrix [ B X
0 C

] can be uniquely
expressed as the product of a block-diagonal perplectic and a perplectic shear. The analogous factor-
ization for block-upper-triangular symplectics was mentioned in [9], [11].

4



where O(n) is the n × n orthogonal group. Alternatively, one may characterize PO(n)
as the set of all centrosymmetric orthogonal matrices.

Each perplectic orthogonal group PO(n) is a Lie group, so the dimension of PO(n)
as a manifold is the same as the vector space dimension of its corresponding Lie algebra,
the n × n skew-symmetric persymmetric matrices. These dimensions are recorded in
Table 3.1 along with the dimensions of the full orthogonal groups for comparison. Note
the 0-dimensionality of PO(2); this group contains only four elements, ±I2, ±R2.

n 2 3 4 5 . . . n(even) n (odd)

dim PO(n) 0 1 2 4 . . . 1
4n(n − 2) 1

4(n − 1)2

dim O(n) 1 3 6 10 . . . 1
2n(n − 1) 1

2n(n − 1)

Table 3.1: Dimensions of PO(n) and O(n)

Another basic property of PO(n) is its lack of connectedness. This contrasts with
the symplectic orthogonal groups SpO(2n), which are always connected2. Since PO(n)
is isomorphic to O(dn

2
e) × O(bn

2
c), it follows that it has four connected components.

Concrete descriptions of these four components when n = 3, 4 are given in Appendix B.
The reason to raise the connectedness issue here is that our algorithms achieve their

goals using only the matrices in POI(n), the connected component of PO(n) that con-
tains the identity matrix In. This component is always a normal subgroup of PO(n)
comprised only of rotations (orthogonal matrices U with detU = 1). The exclusive use of
POI(n) means “far-from-identity” transformations are avoided, which in turn promotes
good convergence behavior of our algorithms.

4 Role of the quaternions

As has been pointed out in the case of real Hamiltonian and skew-Hamiltonian matrices
[3], [10], a structure preserving Jacobi algorithm based on 2×2 subproblems is hampered
by the fact that many of the off-diagonal elements are inaccessible to direct annihilation.
For any 2× 2 based Jacobi algorithm for persymmetric or perskew-symmetric matrices,
the problem is even more acute: with PO(2) = {±I2,±R2}, there are effectively no 2×2
structure preserving similarities with which to transform the matrix.

Following the strategy used in [10], [17], these difficulties can be overcome by using
quaternions to construct simple closed form, real solutions to real doubly-structured
4 × 4 eigenproblems, and then building Jacobi algorithms for the corresponding n × n
eigenproblems using these 4 × 4 solutions as a base.

The n×n skew-symmetric perskew-symmetric case, however, presents an additional
challenge: when n = 4, such a matrix is already in canonical form, since no perplectic

2In [15] the group SpO(2n) is shown to be the continuous image of the complex unitary group U(n),
which is known to be connected.
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orthogonal similarity can reduce it further. A structure preserving Jacobi algorithm
for these “doubly skewed” matrices must necessarily be based on the solution of larger
subproblems, and this remains an open problem.

4.1 The quaternion tensor square H ⊗ H

The connection between the quaternions

H = {q = q0 + q1i+ q2j + q3k : q0, q1, q2, q3 ∈ R, i2 = j2 = k2 = ijk = −1}

and 4×4 real matrices has been exploited before [10], [12], [17]. In particular, the algebra
isomorphism between R4×4 and the quaternion tensor H⊗H was used in [17] to show
that real 4 × 4 symmetric and skew-symmetric matrices have a convenient quaternion
characterization, and again in [10] to develop a quaternion representation for real 4 × 4
Hamiltonian and skew-Hamiltonian matrices. Since we will use this isomorphism to
characterize real 4×4 persymmetric and perskew-symmetric matrices, a brief description
of it is included here.

For each (p, q) ∈ H × H, let f(p, q) ∈ R4×4 denote the matrix representation of the
real linear map on H defined by v 7→ pvq, using the standard basis {1, i, j, k}. Here
q denotes the conjugate q0 − q1i − q2j − q3k. The map f : H × H → R4×4 is clearly
bilinear, and consequently induces a unique linear map φ : H⊗H → R4×4 such that
φ(p⊗ q) = f(p, q).

From the definition of φ it follows that

φ(p⊗ 1) =




p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0


 , φ(1 ⊗ q) =




q0 q1 q2 q3
−q1 q0 −q3 q2
−q2 q3 q0 −q1
−q3 −q2 q1 q0


 . (4.1)

It can be shown that φ is an isomorphism of algebras [2], [21]. The tensor multiplication
rule (a ⊗ b)(a′ ⊗ b′) = (aa′ ⊗ bb′) then implies that the matrices in (4.1) commute, and
their product is φ(p⊗ q). From (4.1) it also follows that

φ(p⊗ 1) = (φ(p⊗ 1))T , φ(1 ⊗ q) = (φ(1 ⊗ q))T . (4.2)

Since conjugation in H⊗H is determined by extending the rule p⊗ q = p ⊗ q linearly
to all of H⊗H, we see that φ preserves more than the algebra structure: conjugation in
H⊗H corresponds, via φ, to transpose in R4×4.

By the usual abuse of notation, we will use p ⊗ q to stand for the matrix φ(p ⊗ q),
both to simplify notation and to emphasize the identification of H⊗H with R4×4.

4.2 Rotations of R3 and R4

The correspondence between general rotations of R3 and R4 and the algebra of quater-
nions goes back to Hamilton and Cayley [4], [5], [13]. Briefly put in the language of
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section 4.1, every element of SO(4) can be expressed as x ⊗ y, where x and y are
quaternions of unit length. This means that the map q 7→ xqy can be interpreted as
a rotation of R4. Similarly, every element of SO(3) can be realized as x ⊗ x for some
unit quaternion x. In this case the map q 7→ xqx keeps the real part of q invari-
ant, and can be interpreted as a rotation acting on the subspace of pure quaternions,
P = {p1i+ p2j + p3k : p1, p2, p3 ∈ R} ∼= R3.

There is a useful and direct relation between the coordinates of a unit quaternion
x = x0 + x1i+ x2j + x3k and the geometry of the associated rotation x⊗ x ∈ SO(3).

Proposition 4.1. Let x be a unit quaternion. Then x⊗x ∈ SO(3) is a rotation with axis
along the vector given by the pure quaternion part, (x1, x2, x3), and angle θ determined
by the real part, x0 = cos(θ/2).

Proof. See, for example, [6], [22].

The following proposition, adapted from [12] and used in [10], will be useful in section
5.

Proposition 4.2. Suppose a, b ∈ P are nonzero pure quaternions such that |ba|−ba 6= 0
(equivalently, such that a/|a| 6= −b/|b|), and let x be the unit quaternion

x =
|ba| − ba

| |ba| − ba | =
|b| |a| − ba

| |b| |a| − ba | . (4.3)

Then x⊗x ∈ SO(3) rotates a into alignment with b. Furthermore, if a and b are linearly
independent, and x is chosen as in (4.3), then x⊗ x is the smallest angle rotation that
sends a into alignment with b.

4.3 4×4 perplectic rotations

Let P ∈ SO(4). Then P can be expressed as x ⊗ y where x, y are unit quaternions. If
P is also perplectic, then by (3.1), P commutes with R4 = j ⊗ i. Hence

P ∈ P(4) ∩ SO(4) ⇔ (x⊗ y)(j ⊗ i) = (j ⊗ i)(x⊗ y)

⇔ xj ⊗ yi = jx⊗ iy

⇔ (xj = jx and yi = iy) or (xj = −jx and yi = −iy).

The first alternative implies x ∈ span {1, j} and y ∈ span{1, i}, while the second im-
plies x ∈ span{i, k} and y ∈ span{j, k}. These two alternatives correspond to the two
connected components of 4× 4 perplectic rotations, with the first alternative describing
POI(4), the connected component containing the identity. This quaternion parametriza-
tion

POI(4) = {x⊗ y : |x| = |y| = 1, x ∈ span{1, j}, y ∈ span{1, i}} , (4.4)

together with the geometric characterization given in the following proposition will be
used to construct structure preserving transformations for the algorithms in this paper.
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Proposition 4.3. Let x, y be unit quaternions such that x⊗y ∈ POI(4). Then the axes
of the 3-dimensional rotations x ⊗ x and y ⊗ y lie along j = (0, 1, 0) and i = (1, 0, 0)
respectively.

Proof. When x⊗y ∈ POI(4), Proposition 4.1 together with (4.4) imply that the angles of
both rotations can be freely chosen, but their axes must lie along j and i, respectively.

4.4 Similarities by rotations

By using quaternions, the computation of rotational similarities in R4×4 becomes tractable.
This was used to advantage in [10], [17], and will once again be exploited here.

Let a, b ∈ H be given. If x, y are unit quaternions, then the product (x⊗y)(a⊗b)(x⊗
y) ∈ H⊗H represents a similarity transformation on φ(a⊗b) ∈ R4×4 by φ(x⊗y) ∈ SO(4).
On the other hand,

(x⊗ y)(a⊗ b)(x⊗ y) = (xax) ⊗ (yby). (4.5)

By Section 4.2, this means that the pure quaternion part of a is rotated by the 3-
dimensional rotation x ⊗ x, while an independent rotation, y ⊗ y ∈ SO(3) rotates the
pure quaternion part of b. Since every element of H⊗H is a real linear combination of
terms of the form a ⊗ b, the effect of a similarity by x ⊗ y ∈ SO(4) can be reduced to
the action of a pair of independent 3-dimensional rotations.

4.5 Simultaneous splittings

When viewed in R4×4 via the isomorphism φ, the standard basis B = {1 ⊗ 1, 1 ⊗
i, . . . , k ⊗ j, k ⊗ k} of H⊗H was shown in [10], [17], to consist of matrices that are
symmetric or skew-symmetric as well as Hamiltonian or skew-Hamiltonian. Something
even more remarkable is true. Each of these sixteen matrices is also either persymmetric
or perskew-symmetric. Thus the quaternion basis simultaneously exhibits no less than
three direct sum decompositions of R4×4 into J ⊕ L :

{Symmetrics} ⊕ {Skew-symmetrics}
{Skew-Hamiltonians} ⊕ {Hamiltonians}

{Persymmetrics} ⊕ {Perskew-symmetrics}

This is shown in Tables 4.1-4.3. For the matrix representation of the quaternion basis,
see Appendix A.

An elegant explanation for why B has this simultaneous splitting property can be
outlined as follows:

• The correspondence between conjugation and transpose explains why each basis
element is either symmetric or skew-symmetric. For example, k ⊗ j is its own
conjugate, so the matrix φ(k ⊗ j) must be symmetric.
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⊗ 1 i j k

1 S K K K
i K S S S
j K S S S
k K S S S

S = Symmetric
K = Skewsymmetric

Table 4.1:

⊗ 1 i j k

1 W W H W
i H H W H
j H H W H
k H H W H

W = Skew–Hamiltonian
H = Hamiltonian

Table 4.2:

⊗ 1 i j k

1 pS pK pS pS
i pS pK pS pS
j pK pS pK pK
k pS pK pS pS

pS = Persymmetric
pK = Perskew–symmetric

Table 4.3:

• Premultiplication by J2n, the matrix that gives rise to the symplectic bilinear form,
is a bijection that turns symmetric matrices into Hamiltonian ones and skew-
symmetric matrices into skew-Hamiltonian ones. Similarly, the bijection given
by premultiplication by Rn, the matrix associated with the perplectic bilinear
form, turns symmetric matrices into persymmetric matrices and skew-symmetric
matrices into perskew-symmetric ones.

• Up to sign, B is closed under multiplication. This is trivial to verify in H⊗H.
Now by a fortuitous concordance, both J4 and R4 belong to B, since J4 = 1 ⊗ j,
and R4 = j ⊗ i. Hence the effect of premultiplication by R4 or J4 is merely to
permute (up to sign) the elements of B. For example, since k⊗j is symmetric, and
R4(k⊗ j) = (j ⊗ i)(k⊗ j) = jk⊗ ij = i⊗ k, it follows that i⊗ k is persymmetric.

Thus one of the reasons why all three families of structures are simultaneously re-
flected in B is that the matrices I4, J4 and R4 that define the underlying bilinear forms
are themselves elements of B. This suggests the possibility of further extensions: each of
the sixteen quaternion basis elements could be used to define a non-degenerate bilinear
form on R4, thus giving rise to sixteen (G,L, J) triples on R4×4, which might then be
extended in some way to triples of structured n × n matrices. However, these sixteen
bilinear forms on R4 are not all distinct. In fact, they fall into exactly three equivalence
classes. The bilinear form defined by I4 is in a class by itself. The other nine symmetric
matrices in B give rise to bilinear forms that are all equivalent to 〈x, y〉 = xTR4 y. The
remaining six skew-symmetric matrices in B define forms that are each equivalent to
〈x, y〉 = xTJ4 y. Thus the three (G,L, J) triples defined in Table 2.1 are essentially the
only ones with quaternion ties.

4.6 Quaternion dictionary

Using Tables 4.1 and 4.3, quaternion representations of structured classes of matrices
relevant to this work can be constructed; these are listed in Table 4.4. For easy reference,
the representation for rotations and perplectic rotations developed in sections 4.2 and
4.3 are also included in the table. For representations of symmetric or skew-symmetric
Hamiltonian and skew-Hamiltonian matrices, the interested reader is referred to [10].
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Table 4.4: Quaternion dictionary for some structured 4 × 4 matrices
α, β, γ, δ ∈ R, p, q, r ∈ P

Diagonal α (1 ⊗ 1) + β (i ⊗ i) + γ (j ⊗ j) + δ (k ⊗ k)
Symmetric α (1 ⊗ 1) + p ⊗ i + q ⊗ j + r ⊗ k

Skew-symmetric p ⊗ 1 + 1 ⊗ q

α, β ∈ R, p, q, r ∈ span{i, k}, s ∈ span{j, k}
Persymmetric α (1 ⊗ 1) + β (j ⊗ i) + p ⊗ j + q ⊗ k + r ⊗ 1 + 1 ⊗ s

Symmetric persymmetric α (1 ⊗ 1) + β (j ⊗ i) + p ⊗ j + q ⊗ k

Skew-symmetric persymmetric r ⊗ 1 + 1 ⊗ s

Perskew-symmetric r ⊗ i + j ⊗ s + α (1 ⊗ i) + β (j ⊗ 1)
Symmetric perskew-symmetric r ⊗ i + j ⊗ s

Skew-symmetric perskew-symmetric α (1 ⊗ i) + β (j ⊗ 1)

|x| = |y| = 1, x, y ∈ H

Rotation x ⊗ y

Perplectic rotation x ⊗ y, x ∈ span{1, j}, y ∈ span{1, i} ,

or x ∈ span{i, k}, y ∈ span{j, k}

We now specify the quaternion parameters for each of the six types of structured
4 × 4 matrices listed in the second group of Table 4.4. This is done in terms of the
matrix entries by using the matrix form of the basis B given in Appendix A.

If A = [a`m] = α (1⊗ 1) + β (j ⊗ i) + p⊗ j + q ⊗ k + r⊗ 1 + 1⊗ s is a 4× 4 real
persymmetric matrix, then the scalars α, β ∈ R, and the pure quaternion parameters p,
q, r ∈ span{i, k}, s ∈ span{j, k}, are given by

α = 1
2
(a11 + a22) (4.6a)

β = 1
4
(a14 + a23 + a32 + a41) (4.6b)

p = [p1, p2, p3] = [ 1
4
(−a14 + a23 + a32 − a41), 0, 1

2
(a21 + a12) ] (4.6c)

q = [q1, q2, q3] = [ 1
2
(a13 + a31), 0, 1

2
(a11 − a22) ] (4.6d)

r = [r1, r2, r3] = [ 1
2
(a21 − a12), 0, 1

4
(−a14 − a23 + a32 + a41) ] (4.6e)

s = [s1, s2, s3] = [ 0, 1
2
(a13 − a31),

1
4
(a14 − a23 + a32 − a41) ]. (4.6f)

The corresponding calculation for a 4 × 4 real perskew-symmetric matrix A = [a`m] =
r ⊗ i + j ⊗ s + α (1 ⊗ i) + β (j ⊗ 1) yields even simpler equations for the scalars α,
β ∈ R and the pure quaternions r ∈ span{i, k}, s ∈ span{j, k}.

α = 1
2
(a12 − a21) (4.7a)

β = 1
2
(−a13 + a31) (4.7b)

r = [r1, r2, r3] = [ 1
2
(a11 + a22), 0, −1

2
(a13 + a31) ] (4.7c)

s = [s1, s2, s3] = [ 0, 1
2
(a11 − a22), −1

2
(a12 + a21) ]. (4.7d)

Next, the four doubly structured classes are handled by specializing (4.6) – (4.7).
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Type A: Symmetric Persymmetric

α = 1
2
(a11 + a22) (4.8a)

β = 1
2
(a14 + a23) (4.8b)

p = [p1, p2, p3] = [ 1
2
(−a14 + a23), 0, a12 ] (4.8c)

q = [q1, q2, q3] = [ a13, 0, 1
2
(a11 − a22) ]. (4.8d)

Type B: Skew-symmetric Persymmetric

r = [r1, r2, r3] = [−a12, 0, −1
2
(a14 + a23) ] (4.9a)

s = [s1, s2, s3] = [ 0, a13,
1
2
(a14 − a23) ]. (4.9b)

Type C: Symmetric perskew-symmetric

r = [r1, r2, r3] = [ 1
2
(a11 + a22), 0, −a13 ] (4.10a)

s = [s1, s2, s3] = [ 0, 1
2
(a11 − a22), −a12 ]. (4.10b)

Type D: Skew-symmetric perskew-symmetric:

α = a12 β = a13 (4.11)

5 Doubly structured 4×4 eigenproblems

Canonical forms via structure preserving similarities are now developed in closed form
for 4 × 4 matrices of Type A, B, and C. This is done by reinterpreting these questions
inside H⊗H as 3-dimensional geometric problems.

For a matrix A of Type D, it can be shown that no 4 × 4 perplectic orthogonal
similarity can reduce A to a more condensed form. Indeed if one uses W ∈ POI(4), then
WAW T = A. This can be seen by using (4.5) with a ⊗ b replaced by the quaternion
representation of a Type D matrix as given in Table 4.4:

(x⊗y)
(
α(1⊗ i)+β(j⊗1)

)
(x⊗y) = α(1⊗yiy)+β(xjx⊗1) = α(1⊗ i)+β(j⊗1). (5.1)

The last equality in (5.1) follows from (4.4). Other similarities from PO(4) can change
A, but only in trivial ways: interchanging the roles of α, β, or changing their signs.
Consequently a Jacobi algorithm for n×n skew-symmetric perskew-symmetric matrices
cannot be based on 4 × 4 structured subproblems. Larger subproblems would need to
be solved; finding closed form structure-preserving solutions for these remains under
investigation.

5.1 4 × 4 symmetric persymmetric

Given a symmetric persymmetric matrix A = α(1 ⊗ 1) + β(j ⊗ i) + p ⊗ j + q ⊗ k ∈
R4×4, to what extent can A be reduced to a simpler form by the similarity WAW T
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when W = x ⊗ y ∈ PO(4)? It is clear that the term α(1 ⊗ 1) is invariant under all
similarities. Converting the second term to matrix form yields β(j ⊗ i) = βR4. Since
every W ∈ PO(4) commutes with R4, the second term will also remain unaffected. Thus
the reduced form of A will in general have terms on the main diagonal as well as the
antidiagonal, and we conclude that A may be reduced, at best, to an “X-form” that will
inherit the double symmetry of A:

[
α1 β1

α2 β2

β2 α2

β1 α1

]
(5.2)

A matrix in this form will have eigenvalues given by α1 ± β1 and α2 ± β2. Now for the
purpose of calculating a W that reduces A to X-form, we may assume without loss of
generality that A = p⊗ j + q ⊗ k. Thus we have

WAW T = (xpx⊗ yjy) + (xqx⊗ yky).

Recall from Table 4.4 that p, q ∈ span{i, k}. The X-form of (5.2) would be achieved
by taking y = 1 and rotating the pure quaternions p and q to multiples of i and k,
respectively. But p and q are affected only by the rotation x ⊗ x, which in general can
align either p with ±i, or q with ±k, but not both. To overcome this difficulty we modify
a strategy first used in [17] for general symmetric matrices.

Define a vector space isomorphism ψ : P⊗P → R3×3 as the unique linear extension
of the map that sends a⊗ b to the rank one matrix abT ∈ R3×3. Then we get

ψ(A) = peT
2 + qeT

3

=




0 p1 q1
0 0 0
0 p3 q3




= σ1



u11

0
u21







0
v11

v21




T

+ σ2



u12

0
u22







0
v12

v22




T

by SVD (5.3)

= ψ(σ1u1 ⊗ v1 + σ2u2 ⊗ v2),

where
[
u1i u2i

]T
and

[
v1i v2i

]T
, i = 1, 2, are respectively the left and right singular

vectors corresponding to the singular values σ1 ≥ σ2 ≥ 0 of ( p1 q1

p3 q3
) ∈ R2×2.

Since ψ is an isomorphism, we have A = p⊗ j + q ⊗ k = σ1(u1 ⊗ v1) + σ2(u2 ⊗ v2).
Because u1, u2 are orthogonal and lie in the i-k plane, a 3-dimensional rotation x ⊗ x
with axis along j that aligns u1 with k must also align u2 with ±i. Similarly, since v1,
v2 are orthogonal vectors in the j-k plane, a rotation y⊗ y with axis along i that aligns
v1 with k will align v2 with ±j. By Proposition 4.1, the unit quaternions x, y must lie
in span{1, j} and span{1, i} respectively. Then W = (x ⊗ 1)(1 ⊗ y) = x ⊗ y will be in
POI(4) by (4.4), and

WAW T = σ1(xu1x⊗ yv1y) + σ2(xu2x⊗ yv2y) = σ1(k ⊗ k) ± σ2(i⊗ j)
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is in X-form. Furthermore, since u1 and v1 are the singular vectors corresponding to the
largest singular value σ1, most of the “weight” of A has been sent to the main diagonal
(represented here by k ⊗ k), while the anti-diagonal (represented here by i ⊗ j) carries
the “secondary” weight.

An X-form can also be achieved by choosing x⊗ y so that u1 is aligned with i, and
v1 with j, effectively reversing the roles of the main diagonal and the anti-diagonal.

To calculate the unit quaternion x, use (4.3) with a = u1, b = k; the computation
of y is similar, this time with a = v1, and b = k. The matrix forms of x ⊗ 1 and 1 ⊗ y
can then be computed from (4.1); the product of these two commuting matrices yields
W . Observe that to determine W , it suffices to find just one singular vector pair u1, v1,
of a 2 × 2 matrix. In practise, one calculates the singular vectors corresponding to the
largest singular value.

The computation of W involves the terms γ = 1 + u21 and δ = 1 + v21. Thus
subtractive cancellation can occur when u21 or v21 is negative, that is, when u1 =
u11i + u21k or v1 = v11j + v21k require rotations by obtuse angles to bring them into
alignment with k. By replacing u1 by −u1 and/or v1 by −v1 as needed, cancellation
can be avoided, and the rotation angles will now be less than 90◦(see Proposition 4.2).
The computation of W is given in the following algorithm, which has been arranged for
clarity, rather than optimality.

Algorithm 1 (4 × 4 symmetric persymmetric). Given a symmetric persymmetric
matrix A ∈ R4×4, this algorithm computes a real perplectic orthogonal matrix W ∈
POI(4) such that WAW T is in X-form as in (5.2).

p =
[

1
2
(a23 − a14) a12

]T
% from (4.8c)

q =
[
a13

1
2
(a11 − a22)

]T
% from (4.8d)

[
U Σ V

]
:= svd

([
p q

])

u =
[
u11 u21

]
% u1 = u11i+ u21k, as in (5.3)

v =
[
v11 v21

]
% v1 = v11j + v21k as in (5.3)

% Change sign to avoid cancellation in computation of α, β

if u21 < 0 then u = −u endif
if v21 < 0 then v = −v endif
α = 1 + u21 ; β = 1 + v21

γ =
√

2α ; δ =
√

2β

Wx =
1

γ




α 0 u11 0
0 α 0 −u11

−u11 0 α 0
0 u11 0 α


 % Wx = x⊗ 1

Wy =
1

δ




β v11 0 0
−v11 β 0 0

0 0 β −v11

0 0 v11 β


 % Wy = 1 ⊗ y

W = WxWy %WAW T is now in X-form
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5.2 4 × 4 skew-symmetric persymmetric

A skew-symmetric persymmetric matrix in R4×4 is of the form A = r⊗ 1 + 1⊗ s where
r ∈ span{i, k} and s ∈ span{j, k}. Consequently one can choose a rotation x ⊗ x with
axis along j that aligns r with k, and an independent rotation y ⊗ y with axis along i
that aligns s with k. Then W = x⊗ y ∈ POI(4) by (4.4), and

WAW T = xrx⊗ 1 + 1 ⊗ ysy

= |r|k ⊗ 1 + |s|1 ⊗ k

=




0 0 0 |s| − |r|
0 0 −|s| − |r| 0
0 |s| + |r| 0 0

−|s| + |r| 0 0 0


 . (5.4)

To calculate the unit quaternion x, use (4.3) with a = r, b = k; the computation of
y is similar, this time with a = s, and b = k. The matrix forms of x⊗ 1 and 1 ⊗ y can
then be computed from (4.1); the product of these two commuting matrices yields W .

The computation of W involves the terms α = ‖r‖2 + r2 and β = ‖s‖2 + s2. Thus
subtractive cancellation can occur when r2 or s2 is negative, that is, when r = r1i+ r2k,
or s = s1j + s2k require rotations by obtuse angles to bring them into alignment with
k. By replacing r by −r and/or s by −s as needed, cancellation can be avoided, and
the rotation angles will now be less than 90◦(see Proposition 4.2). The computation of
W is given in the following algorithm, which has been arranged for clarity, rather than
optimality.

Algorithm 2 (4×4 skew-symmetric persymmetric). Given a skew-symmetric per-
symmetric matrix A ∈ R4×4, this algorithm computes a real perplectic orthogonal matrix
W ∈ POI(4) such that WAW T is in anti-diagonal canonical form as in (5.4).

r =
[
−a12 −1

2
(a14 + a23)

]
% from (4.9a)

s =
[
a13

1
2
(a14 − a23)

]
% from (4.9b)

% Change sign to avoid cancellation in computation of α, β

if r2 < 0 then r = −r endif
if s2 < 0 then s = −s endif
α = ‖r‖2 + r2 ; β = ‖s‖2 + s2

γ = ‖
[
r1 α

]
‖2; δ = ‖

[
s1 β

]
‖2

Wx =
1

γ




α 0 r1 0
0 α 0 −r1

−r1 0 α 0
0 r1 0 α


 %Wx = x⊗ 1

Wy =
1

δ




β s1 0 0
−s1 β 0 0
0 0 β −s1

0 0 s1 β


 %Wy = 1 ⊗ y

W = WxWy %WAW T is now in canonical form as in (5.4)
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5.3 4 × 4 symmetric perskew-symmetric

If A ∈ R4×4 is symmetric perskew-symmetric, then A = r⊗i+j⊗s where r ∈ span{i, k}
and s ∈ span{j, k}. Choose a unit quaternion x so that the rotation x⊗x has axis along
j, and xrx is a multiple of i. Similarly choose a rotation y ⊗ y with axis along i that
sends s to a multiple of j. Setting W = x⊗ y, we see from (4.4) that W ∈ POI(4), and

WAW T = xrx⊗ i+ j ⊗ ysy = |r|i⊗ i+ |s|j ⊗ j

=




|r| + |s| 0 0 0
0 |r| − |s| 0 0
0 0 −|r| + |s| 0
0 0 0 −|r| − |s|


 . (5.5)

To calculate the unit quaternion x, use (4.3) with a = r, b = i; the computation of
y is similar, this time with a = s, and b = j. The matrix forms of x ⊗ 1 and 1 ⊗ y can
then be computed from (4.1); the product of these two commuting matrices yields W .

The computation of W involves the terms α = ‖r‖2 + r1 and β = ‖s‖2 + s1. Thus
subtractive cancellation can occur when r1 or s1 is negative, that is, when r = r1i+ r2k,
or s = s1j + s2k require rotations by obtuse angles to bring them into alignment with
i, j, respectively. By replacing r by −r and/or s by −s as needed, cancellation can be
avoided, and the rotation angles will now be less than 90◦(see Proposition 4.2). The
computation of W is given in the following algorithm, which has been arranged for
clarity, rather than optimality.

Algorithm 3 (4× 4 symmetric perskew-symmetric). Given a symmetric perskew-
symmetric matrix A ∈ R4×4, this algorithm computes a real perplectic orthogonal matrix
W ∈ POI(4) such that WAW T is in diagonal canonical form as in (5.5).

r =
[

1
2
(a11 + a22) −a13

]
% from (4.10a)

s =
[

1
2
(a11 − a22) −a12

]
% from (4.10b)

% Change sign to avoid cancellation in computation of α, β

if r1 < 0 then r = −r endif
if s1 < 0 then s = −s endif
α = ‖r‖2 + r1 ; β = ‖s‖2 + s1

γ = ‖
[
α r2

]
‖2 ; δ = ‖

[
β s2

]
‖2

Wx =
1

γ




α 0 −r2 0
0 α 0 r2
r2 0 α 0
0 −r2 0 α


 %Wx = x⊗ 1

Wy =
1

δ




β −s2 0 0
s2 β 0 0
0 0 β s2

0 0 −s2 β


 %Wy = 1 ⊗ y

W = WxWy %WAW T is now in canonical form as in (5.5)
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6 Doubly structured 3 × 3 eigenproblems

As we shall see in section 8, when n is odd, Jacobi algorithms for n× n matrices in the
classes considered in this paper also require the solution to 3 × 3 eigenproblems.

6.1 PO(3)

Rather than working via the quaternion characterization of SO(3), a useful parametriza-
tion of PO(3) that exhibits its four connected components can be obtained directly
from (3.1). Two of these components form the intersection of PO(3) with the group
of rotations SO(3). Our algorithms will only use matrices from POI(3), the connected
component containing the identity, given by

POI(3) =



W (θ) =

1

2



c+ 1

√
2s c− 1

−
√

2s 2c −
√

2s

c− 1
√

2s c+ 1


 : c = cos θ, s = sin θ, θ ∈ [0, 2π)



 .

(6.1)
This restriction to POI(3) ensures, just as in the 4 × 4 case, that “far-from-identity”
rotations are avoided in our algorithms. Details of the derivation of (6.1) as well as
parametrizations for the other three connected components of PO(3) are given in Ap-
pendix B.

6.2 3 × 3 symmetric persymmetric

Given a nonzero symmetric persymmetric matrix A =

[
α β γ
β δ β
γ β α

]
, we want W ∈ POI(3)

so that the (1, 2) element of WAW T is zeroed out. Because such a similarity preserves
symmetry as well as persymmetry, we will then have

WAW T =
[
∗ 0 •
0 × 0
• 0 ∗

]
. (6.2)

Using the parametrization W = W (θ) given in (6.1) and setting the (1, 2) element of
WAW T to zero yields

1√
2

(δ − α− γ)cs+ β(c2 − s2) = 0.

This equation is analogous to the one that arises in the solution of the 2× 2 symmetric
eigenproblem for the standard Jacobi method (see e.g., [26, p.350]), and it can be solved
for (c, s) in exactly the same way. Let

t̂ =
2
√

2 β

α + γ − δ
and t =

t̂

1 +
√

1 + t̂2
.

Then taking

(c, s) =

(
1√

1 + t2
, ct

)
(6.3)

in (6.1) gives a W = W (θ) that achieves the desired form (6.2).
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Algorithm 4 (3 × 3 symmetric persymmetric). Given a symmetric persymmetric
matrix A ∈ R3×3, this algorithm computes W ∈ POI(3) such that WAW T is in canonical
form as in (6.2).

t̂ =
2
√

2 a12

a11 + a13 − a22

; t =
t̂

1 +
√

1 + t̂2

c =
1√

1 + t2
; w2 =

1√
2
ct % s =

√
2w2

w1 = 1
2
(c+ 1) ; w3 = 1

2
(c− 1)

W =



w1 w2 w3

−w2 c −w2

w3 w2 w1




6.3 3 × 3 skew-symmetric persymmetric

Given a nonzero skew-symmetric persymmetric matrix A =

[
0 β α
−β 0 β
−α −β 0

]
, we want W ∈

POI(3) so that the (1, 2) element of WAW T is zeroed out. Because of the preservation
of double structure, we will then have

WAW T =
[

0 0 γ
0 0 0
−γ 0 0

]
. (6.4)

Proceeding as in section 6.2 leads to βc− 1√
2
αs = 0. Among the two options for (c, s)

satisfying this condition, the choice

(c, s) =
1√

α2 + 2β2

(
|α| , (signα)

√
2 β

)
(6.5)

corresponds to using the small angle for θ in the expression W = W (θ) given in (6.1),
thus making W as close to the identity as possible.

Algorithm 5 (3×3 skew-symmetric persymmetric). Given a skew-symmetric per-
symmetric matrix A ∈ R3×3, this algorithm computes W ∈ POI(3) such that WAW T is
in canonical form as in (6.4).

α = a13 ; β = a12

δ = ‖
[
α β β

]
‖2

c = α/δ ; w2 = β/δ % s =
√

2w2

if α < 0
c = −c ; w2 = −w2

endif
w1 = 1

2
(c+ 1) ; w3 = 1

2
(c− 1)

W =



w1 w2 w3

−w2 c −w2

w3 w2 w1
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6.4 3 × 3 symmetric perskew-symmetric

Given a nonzero symmetric perskew-symmetric matrix A =

[
α β 0
β 0 −β
0 −β −α

]
, we want W ∈

POI(3) so that

WAW T =
[

γ 0 0
0 0 0
0 0 −γ

]
. (6.6)

Since both perskew-symmetry and symmetry are automatically preserved by any sim-
ilarity with W ∈ POI(3), we only need to ensure that the (1, 2) element of WAW T is
zero. This leads to the same condition as in section 6.3, that is, we need to choose the
parameters c, s in W = W (θ) so that βc − 1√

2
αs = 0. Consequently c, s chosen as in

(6.5) yields W ∈ POI(3) as close to the identity as possible.

Algorithm 6 (3× 3 symmetric perskew-symmetric). Given a symmetric perskew-
symmetric matrix A ∈ R3×3, this algorithm computes W ∈ POI(3) such that WAW T is
canonical form as in (6.6).

α = a11 ; β = a12

δ = ‖
[
α β β

]
‖2

c = α/δ ; w2 = β/δ % s =
√

2w2

if α < 0
c = −c ; w2 = −w2

endif
w1 = 1

2
(c+ 1) ; w3 = 1

2
(c− 1)

W =



w1 w2 w3

−w2 c −w2

w3 w2 w1




7 Perplectic orthogonal canonical forms

To build Jacobi algorithms from the 4×4 and 3×3 solutions described in sections 5 and
6, we need well-defined targets, that is, n × n structured canonical forms at which to
aim our algorithms. The following theorem describes the canonical forms achievable by
perplectic orthogonal (i.e. structure-preserving) similarities for each of the four classes
of doubly-structured matrices under consideration.

Theorem 7.1. Let A ∈ Rn×n.

(a) If A is symmetric and persymmetric then there exists a perplectic-orthogonal matrix
P such that P−1AP is in structured “X-form”, that is

P−1AP =




@
@�
�

0

0
0 0

a1
a2

a2
a1

b1
b2

b2
b1



, (7.1)
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which is both symmetric and persymmetric.

(b) If A is skew-symmetric and persymmetric, then there exists a perplectic-orthogonal
matrix P such that P−1AP is antidiagonal and skew-symmetric, that is,

P−1AP =


 �

�

-a
-b

b
a 0

0

 . (7.2)

(c) If A is symmetric and perskew-symmetric, then there exists a perplectic-orthogonal
matrix P such that P−1AP is diagonal and perskew-symmetric, that is,

P−1AP =


 @

@

a
b

-b
-a

0

0


 . (7.3)

(d) If A is skew-symmetric and perskew-symmetric then there exists a perplectic-orthogonal
matrix P such that P−1AP has the following “block X-form”,

P−1AP =




@

�

�

@

0

0

0 0

A1

A2

−A2

−A1

B1

B2

−B2

−B1

Z



, (7.4)

where Ai and Bi are 2 × 2 real matrices of the form
[

0 ai

−ai 0

]
and

[
bi 0
0 −bi

]
, respec-

tively, and

Z =





∅ if n ≡ 0 mod 4,

0 if n ≡ 1 mod 4,

[ 0 0
0 0 ] if n ≡ 2 mod 4,[
0 −c 0
c 0 c
0 −c 0

]
if n ≡ 3 mod 4.

Since similarity by P preserves structure, the block X-form given by (7.4) is both
skew-symmetric and perskew-symmetric.

The result of part(a) cannot be improved, as the matrix A = I +R demonstrates: it
is symmetric and persymmetric, and impervious to any perplectic orthogonal similarity.
The result of part(d) is also the best that can be achieved: by the discussion accompa-
nying (5.1), the 4× 4 skew-symmetric perskew-symmetric matrices

[
Ai Bi

−Bi −Ai

]
cannot be

reduced further. The main impetus for conjecturing the canonical forms given in Theo-
rem 7.1 comes from the quaternion solution in the case when n = 4. For a proof of the
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general case, see [16]. Complex canonical forms for various classes of doubly structured
matrices in Cn×n have been discussed in [1], [20]. However, the real canonical forms
given by Theorem 7.1 cannot be readily derived from the results in [1], [20].

The next section presents structure-preserving Jacobi algorithms to achieve the
canonical forms in (7.1)-(7.3). As was remarked earlier, a consequence of (5.1) is that
a Jacobi algorithm for doubly skewed matrices cannot be built using 4× 4 subproblems
as a basis. Finding a structure-preserving algorithm to achieve the canonical form given
in (7.4) remains an open problem.

8 Sweep design

For a Jacobi algorithm to have a good rate of convergence to the desired canonical form,
it is essential that every element of the n× n matrix be part of a target subproblem at
least once during a sweep, whether the sweep is cyclic or quasi-cyclic. There are several
ways to design a sequence of structured subproblems that give rise to such sweeps.

Let A =



B x C
yT α zT

D w E


 ∈ Rn×n have symmetry or skew-symmetry about the main

diagonal as well as the anti-diagonal. Here B, C, D, E ∈ Rm×m, where m = bn
2
c. If n

is odd, then x, y, z, w ∈ Rm and α ∈ R; otherwise these variables are absent.
First note that an off-diagonal element aij chosen from the m×m block B uniquely

determines a 4 × 4 principal submatrix A4[i, j] that is centrosymmetrically embedded in
A; this means that A4[i, j] is located in rows and columns i, j, n− j + 1 and n− i+ 1:

A4[i, j] =




aii aij ai,n−j+1 ai,n−i+1

aji ajj aj,n−j+1 aj,n−i+1

an−j+1,i an−j+1,j an−j+1,n−j+1 an−j+1,n−i+1

an−i+1,i an−i+1,j an−i+1,n−j+1 an−i+1,n−i+1


 . (8.1)

Centrosymmetrically embedded submatrices inherit both structures from the parent ma-
trix A— symmetry or skew-symmetry together with persymmetry or perskew-symmetry.
Furthermore, when n is even, any cyclic or quasi-cyclic sweep of the block B consisting of
2×2 principal submatrices will generate a corresponding cyclic (respectively quasi-cyclic)
sweep of A, comprised entirely of 4×4 centrosymmetrically embedded subproblems. An
illustration when n = 8 is given in Figure 8.1 using a row-cyclic sweep for B. The entry
denoted by � determines the position of the rest of the elements in the current target
subproblem. These are represented by heavy bullets. Observe that every entry of A is
part of a target submatrix during the course of the sweep, and that this property will
hold for any choice of a 2×2 based cyclic or quasi-cyclic sweep pattern for B. Animated
views, in various formats, of a row-cyclic sweep on a 12 × 12 matrix can be found at
http://www.cscamm.umd.edu/~ddunlavy/perplectic.html.

When n is odd, a sweep will involve centrosymmetrically embedded 3 × 3 targets as
well as 4× 4 ones. A 3× 3 target A3[i] is determined by a single element aii chosen from
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• � · · · · • •
• • · · · · • •
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
• • · · · · • •
• • · · · · • •




;




• · � · · • · •
· · · · · · · ·
• · • · · • · •
· · · · · · · ·
· · · · · · · ·
• · • · · • · •
· · · · · · · ·
• · • · · • · •




;




• · · � • · · •
· · · · · · · ·
· · · · · · · ·
• · · • • · · •
• · · • • · · •
· · · · · · · ·
· · · · · · · ·
• · · • • · · •




;




· · · · · · · ·
· • � · · • • ·
· • • · · • • ·
· · · · · · · ·
· · · · · · · ·
· • • · · • • ·
· • • · · • • ·
· · · · · · · ·




;




· · · · · · · ·
· • · � • · • ·
· · · · · · · ·
· • · • • · • ·
· • · • • · • ·
· · · · · · · ·
· • · • • · • ·
· · · · · · · ·




;




· · · · · · · ·
· · · · · · · ·
· · • � • • · ·
· · • • • • · ·
· · • • • • · ·
· · • • • • · ·
· · · · · · · ·
· · · · · · · ·




Figure 8.1: Row-cyclic structured sweep, n = 8

the m × m block B, and always involves elements from x, w, yT , zT , and the center
element α = am+1,m+1:

A3[i] =



aii ai,m+1 ai,n−i+1

am+1,i am+1,m+1 am+1,n−i+1

an−i+1,i an−i+1,m+1 an−i+1,n−i+1


 . (8.2)

Animated views, in various formats, of a row-cyclic sweep on a 13 × 13 matrix can
be found at http://www.cscamm.umd.edu/~ddunlavy/perplectic.html. Figure 8.2
illustrates such a sweep for n = 7; entries in locations corresponding to x, y, zT , wT and
α are depicted by ∗.

Once a target submatrix of A has been identified, W ∈ POI(4) or W ∈ POI(3) is
constructed using the appropriate algorithm from section 5.1, 5.2 or 5.3, or section 6.2,
6.3 or 6.4. Centrosymmetrically embedding W into In yields a matrix in POI(n).

A Jacobi algorithm built on these ideas is illustrated in Algorithm 7 for a symmetric
persymmetric matrix A, using a row-cyclic ordering. Since in this case A is being driven
to X-form as in (7.1),

off(A) =

√ ∑

(i,j)∈S

a2
ij where S = {(i, j) : 1 ≤ i, j ≤ n, j 6= i, j 6= n− i+ 1}

is used as a measure of the deviation from the desired canonical form.
Figure 8.3 depicts a slide show of Algorithm 7 running on a 12 × 12 symmetric

persymmetric matrix. A snapshot of the matrix is taken after each iteration, that is, after
each 4×4 similarity transformation. Each row of snapshots shows the progression during
a sweep. In this case, the algorithm terminates after 5 sweeps. Movies of Algorithm 7
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• � · ∗ · • •
• • · ∗ · • •
· · · ∗ · · ·
∗ ∗ ∗ ∗ ∗ ∗ ∗
· · · ∗ · · ·
• • · ∗ · • •
• • · ∗ · • •




;




• · � ∗ • · •
· · · ∗ · · ·
• · • ∗ • · •
∗ ∗ ∗ ∗ ∗ ∗ ∗
• · • ∗ • · •
· · · ∗ · · ·
• · • ∗ • · •




;




• · · � · · •
· · · ∗ · · ·
· · · ∗ · · ·
• ∗ ∗ • ∗ ∗ •
· · · ∗ · · ·
· · · ∗ · · ·
• · · • · · •




;




· · · ∗ · · ·
· • � ∗ • • ·
· • • ∗ • • ·
∗ ∗ ∗ ∗ ∗ ∗ ∗
· • • ∗ • • ·
· • • ∗ • • ·
· · · ∗ · · ·




;




· · · ∗ · · ·
· • · � · • ·
· · · ∗ · · ·
∗ • ∗ • ∗ • ∗
· · · ∗ · · ·
· • · • · • ·
· · · ∗ · · ·




;




· · · ∗ · · ·
· · · ∗ · · ·
· · • � • · ·
∗ ∗ • • • ∗ ∗
· · • • • · ·
· · · ∗ · · ·
· · · ∗ · · ·




Figure 8.2: Row-cyclic structured sweep, n = 7

1e−15 1e−10 1e−5 1

Figure 8.3: Algorithm 7 running on a 12 × 12 symmetric persymmetric matrix

running on 12 × 12 and 32 × 32 symmetric persymmetric matrices can be downloaded
from http://www.cscamm.umd.edu/~ddunlavy/perplectic.html.

Algorithm 7 (Row-cyclic Jacobi for symmetric persymmetric matrices). Given
a symmetric persymmetric matrix A ∈ Rn×n, and a tolerance tol > 0, this algo-
rithm overwrites A with its approximate canonical form PAP T where P ∈ POI(n) and
off(PAP T ) < tol‖A‖F . The matrix P is also computed.

P = In ; δ = tol ‖A‖F ; m = bn/2c
while off(A) > δ

for i = 1:m− 1
for j = i+ 1:m

Use Algorithm 1 to find W ∈ R4×4 such that A4[i, j] is in X-form
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P̂ = In ; P̂4[i, j] = W

A = P̂AP̂ T

P = P̂P
endfor
if n is odd then

Use Algorithm 4 to find W ∈ R3×3 such that A3[i] is in X-form

P̂ = In ; P̂3[i] = W

A = P̂AP̂ T

P = P̂P
endif

endfor
if n is odd then

Use Algorithm 4 to find W ∈ R3×3 such that A3[m] is in X-form

P̂ = In ; P̂3[m] = W

A = P̂AP̂ T

P = P̂P
endif

endwhile % A is now in canonical form as in (7.1)

Parallelizable Jacobi orderings in the 2 × 2 setting (see for example [7], [8], [14], [18],
[19], [24]) on the m×m block B yield corresponding parallelizable structure-preserving
sweeps for the n × n matrix A. Finally we note that since the double structure of the
n × n matrix is always preserved, both storage requirements and operation counts can
be lowered by roughly a factor of four.

9 Numerical Results

We present a brief set of numerical experiments to demonstrate the effectiveness of our
algorithms. All computations were done using MATLAB Version 5.3.0 on a Sun Ultra
5 with IEEE double-precision arithmetic and machine precision ε = 2.2204 × 10−16. As
stopping criteria we chose reloff(A) < tol, where reloff(A) = off(A)/‖A‖F . Here off(A)
is the appropriate off-diagonal norm for the structure under consideration, ‖A‖F is the
Frobenius norm of A, and tol = ε‖A‖F .

For each of the three doubly-structured classes, and for each n = 20, 25, . . . , 100, the
algorithms were run on 100 random 2n × 2n structured matrices with entries normally
distributed with mean zero (µ = 0) and variance one (σ = 1). The tests were repeated
for matrices with entries uniformly distributed on the interval [−1, 1] with no significant
differences in the results. The results are reported in Figures 9.1-9.2 and Tables 9.1-9.3
and discussed below.

• The methods always converged, and the off-norm always decreased monotonically.
The convergence rate was initially linear, but asymptotically quadratic. This is
shown in Figure 9.1 using a sample 200×200 matrix from each of the three classes.
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Figure 9.1: Typical convergence behavior of 200 × 200 matrices
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Figure 9.2: Average number of sweeps for convergence for 2n× 2n matrices

• It was experimentally observed that the number of sweeps needed for convergence
depends only on matrix size: the standard deviation of the average number of
sweeps was consistently very low — between 0 and 0.52. Figure 9.2 suggests
that roughly O(log n) sweeps suffice. This leads to an a priori stopping criterion,
which is an important consideration on parallel architectures: a stopping criteria
that depends on global knowledge of the matrix elements would undermine the
advantage gained by parallelism.

• As the matrices are always either symmetric or skew-symmetric, all eigenvalues
have condition number equal to 1, are all real or pure imaginary, and can be easily
sorted and compared with the eigenvalues computed by matlab’s eig function.
The maximum relative error, releig = maxj|λeig

j − λjac
j |/|λeig

i | was of the order
10−13 as shown in the last column of Tables 9.1-9.3.

• The computed perplectic orthogonal transformations P from which the eigenvec-
tors or invariant subspaces can be obtained were both perplectic as well as or-
thogonal to within 6.3 × 10−14, as measured by ‖P TRP − R‖ and ‖P TP − I‖
in Tables 9.1-9.3. Since perplectic orthogonal matrices are centrosymmetric (see
section 3), the deviation from centrosymmetric block structure [ U V

RV R RUR ] can be
measured by block = ‖P (1 : n, 1 : n) − RP (n + 1 : 2n, n + 1 : 2n)R‖F + ‖P (1 :
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2n sweeps reloff ‖P T RP − R‖F ‖PT P − I‖F block releig

50 7.22 4.04 × 10−16 1.40 × 10−14 1.42 × 10−14 3.03 × 10−15 3.29 × 10−14

100 8.02 4.66 × 10−16 2.98 × 10−14 3.00 × 10−14 4.55 × 10−15 1.02 × 10−13

150 8.27 4.09 × 10−15 4.50 × 10−14 4.52 × 10−14 5.76 × 10−15 1.47 × 10−13

200 8.84 1.99 × 10−15 6.22 × 10−14 6.25 × 10−14 6.77 × 10−15 1.09 × 10−13

Table 9.1: 2n× 2n symmetric persymmetric matrices

2n sweeps reloff ‖P T RP − R‖F ‖PT P − I‖F block releig

50 7.10 1.02 × 10−15 9.79 × 10−15 9.95 × 10−15 3.01 × 10−15 3.30 × 10−14

100 8.02 1.27 × 10−15 1.99 × 10−14 2.01 × 10−14 4.55 × 10−15 6.06 × 10−14

150 8.14 3.16 × 10−15 2.75 × 10−14 2.78 × 10−14 5.68 × 10−15 8.60 × 10−14

200 8.54 6.18 × 10−15 3.82 × 10−14 3.84 × 10−14 6.69 × 10−15 1.30 × 10−13

Table 9.2: 2n× 2n symmetric perskew-symmetric matrices

2n sweeps reloff ‖P T RP − R‖F ‖PT P − I‖F block releig

50 7.84 1.03 × 10−15 1.08 × 10−14 1.10 × 10−14 3.18 × 10−15 1.68 × 10−14

100 8.67 2.25 × 10−15 2.25 × 10−14 2.27 × 10−14 4.77 × 10−15 8.22 × 10−14

150 9.05 2.52 × 10−15 3.21 × 10−14 3.24 × 10−14 6.00 × 10−15 7.05 × 10−14

200 9.28 4.44 × 10−15 4.26 × 10−14 4.28 × 10−14 7.03 × 10−15 1.11 × 10−13

Table 9.3: 2n× 2n skew-symmetric persymmetric matrices

n, n + 1 : 2n) − RP (n + 1 : 2n, 1 : n)R‖F ; both terms in this sum had about the
same size. Note that eigenvectors computed by matlab’s eig function cannot be
directly compared to the perplectic bases obtained by our algorithms.

10 Concluding remarks

We have presented new structured canonical forms for matrices that are symmetric or
skew-symmetric with respect to the main diagonal as well as the anti-diagonal, and
developed structure-preserving Jacobi algorithms to compute these forms in three out
of four cases. In the fourth case – when the matrix is skew-symmetric with respect to
both diagonals – a structure preserving method to compute the corresponding canonical
form remains an open problem.

In order to effectively design structure preserving transformations for our algorithms,
explicit parametrizations of the perplectic orthogonal groups PO(3) and PO(4) were de-
veloped. These groups are disconnected, so in order to promote good convergence behav-
ior, the algorithms were designed to accomplish their goals using only transformations
in the connected component of the identity matrix.

In addition to preserving the double structure in the parent matrix throughout the
computation, these algorithms are inherently parallelizable and are experimentally ob-
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served to be asymptotically quadratically convergent. It is expected that the recent
analysis by Tisseur [25] of a related family of algorithms can also be applied to this work
to show that these methods are not only backward stable, but in fact strongly backward
stable.

A The Quaternion Basis for R4×4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







0 1 0 0
−1 0 0 0

0 0 0 −1
0 0 1 0







0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0







0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0




1 ⊗ 1 1 ⊗ i 1 ⊗ j 1 ⊗ k




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0







1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1







0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




i ⊗ 1 i ⊗ i i ⊗ j i ⊗ k




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0







1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1







0 −1 0 0
−1 0 0 0

0 0 0 1
0 0 1 0




j ⊗ 1 j ⊗ i j ⊗ j j ⊗ k




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0







0 0 −1 0
0 0 0 1

−1 0 0 0
0 1 0 0







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




k ⊗ 1 k ⊗ i k ⊗ j k ⊗ k

B Parametrizations of PO(3) and PO(4)

Since the only 2×2 matrices that are centrosymmetric and orthogonal are ±I2 and ±R2,
PO(2) is a discrete group with four connected components. The explicit parametrizations
of PO(3) and PO(4) developed here show that each of these groups also has exactly four
connected components.

B.1 PO(3)

Let W ∈ PO(3). By (3.1), W is centrosymmetric and hence can be expressed as

W =



α β γ
δ ε δ
γ β α


 .
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Using orthogonality we get

α2 + δ2 + γ2 = α2 + β2 + γ2 =⇒ δ = ±β

If δ = 0, then β = 0 and ε = ±1. This means [ α γ
γ α ] ∈ PO(2), and hence [ α γ

γ α ] is ±I2 or
±R2. Otherwise,

αβ + δε+ γβ = 0 =⇒ δε = −β(α + γ) =⇒ ε =

{
−(α + γ) if δ = β,

α + γ if δ = −β
2αγ + β2 = 0, α2 + β2 + γ2 = 1 =⇒ (α + γ)2 + 2β2 = 1.

Thus we may write α + γ = cos θ and β = 1√
2
sin θ, where θ ∈ [0, 2π). Substituting for

β in 2αγ + β2 = 0 yields 4αγ = − sin2 θ. Consequently,

α + γ = cos θ =⇒ 4α2 − sin2 θ = 4α cos θ =⇒ α = 1
2
(cos θ ± 1), γ = 1

2
(cos θ ∓ 1)

This gives us a parametrization of PO(3) that reveals this group has four connected
components, two of which consist of perplectic orthogonals with positive determinant
(that is, perplectic orthogonal rotations). Using the abbreviations c = cos θ, s = sin θ,
the connected component containing the identity is given by

POI(3) =



W (θ) =

1

2



c+ 1

√
2s c− 1

−
√

2s 2c −
√

2s

c− 1
√

2s c+ 1


 ,where θ ∈ [0, 2π)



 . (B.1)

Each W (θ) represents a rotation by angle θ about the axis through
[
1 0 −1

]T
. As

is the case for the connected component of the identity in any Lie group, POI(3) is
a normal subgroup of PO(3). The other component containing perplectic rotations is
parametrized by

1

2



c− 1

√
2s c+ 1√

2s −2c
√

2s

c+ 1
√

2s c− 1


 =




0 0 1
0 −1 0
1 0 0


W (θ),

while the two components containing perplectic orthogonals with negative determinant
are given by

1

2



c+ 1

√
2s c− 1√

2s −2c
√

2s

c− 1
√

2s c+ 1


 =




1 0 0
0 −1 0
0 0 1


W (θ),

and

1

2



c− 1

√
2s c+ 1

−
√

2s 2c −
√

2s

c+ 1
√

2s c− 1


 =




0 0 1
0 1 0
1 0 0


W (θ).

Thus these three connected components correspond to left cosets of the normal subgroup
POI(3). Observe that these parametrizations also show that each of the components of
PO(3) is homeomorphic to the circle S1.
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B.2 PO(4)

From section 4.3 we have the quaternion parametrizations

POI(4) =
{
u⊗ v : |u| = |v| = 1, u ∈ span{1, j}, v ∈ span{1, i}

}

for the connected component containing the identity, and

{
u⊗ v : |u| = |v| = 1, u ∈ span{i, k}, v ∈ span{j, k}

}
(B.2)

for the other connected component of PO(4) containing rotations. Writing u = cosα +
(sinα)j and v = cos β + (sin β)i where 0 ≤ α < 2π and 0 ≤ β < 2π, we can write
W (α, β) ∈ POI(4) in matrix form as

W (α, β) = u⊗ v = (u⊗ 1)(1 ⊗ v)

=




cosα 0 − sinα 0
0 cosα 0 sinα

sinα 0 cosα 0
0 − sinα 0 cosα







cos β sin β 0 0
− sin β cos β 0 0

0 0 cos β − sin β
0 0 sin β cos β




=




cosα cos β cosα sin β − sinα cos β sinα sin β
− cosα sin β cosα cos β sinα sin β sinα cos β
sinα cos β sinα sin β cosα cos β − cosα sin β
sinα sin β − sinα cos β cosα sin β cosα cos β


 .

A perplectic rotation in the connected component given by (B.2) can then be expressed
as

(k ⊗ k) ·W (α, β) =

[
1
−1

−1
1

]
W (α, β) .

There are two more connected components of PO(4), containing matrices with neg-
ative determinant. They are given by the parametrizations

{[
1

0 1
1 0

1

]
W (α, β)

}
,

{[
1

0 −1
−1 0

1

]
W (α, β)

}
.

Once again, the connected component containing the identity is a normal subgroup of
PO(4); the parametrizations for the other three connected components show that they
are cosets of POI(4).
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